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Modeling dynamically heterogeneous coupled relaxations
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A model describing dynamically heterogeneous relaxation in complex coupled systems is presented. The
model predicts the splitting of a high-temperature single Debye relaxation to a low-temperature bimodal
relaxation. The bimodal process shows a crossover from a Debye-type relaxation to an approximately
stretched-exponential relaxation. Some general features of relaxation in complex systems emerge from the
predictions of the model, and a comparison of the model with experiments is reported.
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[. INTRODUCTION the compliance in dielectric and mechanical measurements,
respectively. According to the Debye theory, the change of
The relaxation dynamics of molecules and other mutuallyé(X,t) with time (i.e., relaxation of the units is proportional
interacting densely packed embodies many challenging protio §(X,t)/7p(X), and the energy dissipated per unit time is
lems of current interest in many fields, including the glassé(X,t)?/8(X) 7p(X) [15], whererp(X) is the relaxation time.
transition, polymer viscoelasticity, and solid-state ionics Because of thermal agitation, the units move randomly in
[1,2]. These issues are difficult to treat because of the pre§t]e|r interaction field and scattering processes will occur that
ence of several complicating factors. The foremost one is th@iVe rise to the energy exchange between them. Thus, there
many-body effect, sometimes loosely referred to as coopeis a spatial energy flux,g(X,t), between different units. Al-
ativity, coupled dynamics, intermolecular constraints, orthough there is an energy exchange between two units for
cage effect, that is very difficult to accurately describe. Theré@ny single-scattering process at the equilibrium state, it is
are some modelg3-5] that identify the cage effects or co- expected that the net energy exchange is zgre(X,t)
operative dynamics from the many-body molecular interac=0], for relatively long times compared with the time inter-
tion as responsible for the nonexponential relaxation functioryal between two successive scattering processes. If the en-
[6,7] and the dynamically heterogeneous nature of the relaxergy difference between the unitsd{£(X,t)?/25(x)), there
ation, i.e., the existence of fast and slow relaxing upgls ~ Will be a net energy exchange between the units so that
Recent experiments employing nuclear-magnetic-resonanceg(X,t) will be proportional to both the number of scattering
dielectric, and optical techniques suggest the presence of dprocesses per unit timeg(X), and A(&(X,1)%125(X)), i.e.,
namically distinguishable subensembf@s-12. This impor-  {(X,t)cvg(X)A(£(X,t)%/28(X,t)). The approximate re-
tant finding has recently been reviewl8]. placement of the energy difference by the spatial differential
In principle, if the Hamiltonian that includes all interac- form, V(&(X,t)2/25(X)), leads to,
tions of the system is used, the nonexponentiality, dynamic o2
heterogeneity, and other properties of the relaxation of the ie(X t)=—DE(>2)V(§(X’E) ) (1)
coupled units would emerge. Although such an approach is ' 25(X)

not possible at this time, molecular-dynamics simulations dQNhereDE(i) is the coupling constant whose sign is always

ir;_(iicallte ﬁ_ynamical heterogegeity in a dgllass—forminfg Sysﬂer&bositive. The negative sign in E@l) indicates that the di-
[14]. In this paper, we consider a model system of coupledqiinn of the energy flux points from the units with higher

fast and slovy relaxing uni_ts. The purpose is to calculate th%nergy to those with lower energy. As the temperature in-

results of this paper, which has built in some features Ofygases, the random motions of the units become stronger, so

dynamical heterogeneity. The model is also applicable tqnaty ¢ and consequentipg(X) will increase.

other problems that consider the slow down of the relaxation |t js worth noting that Eq(1) has the same form as the

of a test molecular unit coupled to a nonrelaxing moleculagyell-known diffusion law[16]. However, while thermal en-

environment. ergy is transported during a thermal diffusion process, Equa-

tion (1) describes the energy exchange between different in-

teraction units. To know whetheDg(X) has a definite

relation with the thermal diffusion coefficient requires fur-
Under the influence of a small enough time-dependenther study.

external fieldF (t), the linear response of all the units located ~ Without losing generality, let the external field

at space poink and at timet is described by a dynamic E. t<0

variable, £(X,t), such as polarization. The energy density F(t)= OO’ t=0"

associated with this response §6x,t)%/28(X) [15], where T

4(X) is the difference between the static and high-frequencyror a closed interfac& around a unit, the conservation of

limit susceptibilities, such as the dielectric susceptibility andenergy requires that,
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E(X,1)? oL
E(0)= V260%) dv+ fo ilE(x,t )ds) dt
CERYE
o, J05<i)rn<i>d‘ }d\" @

whereE(0) is the energy of the unit &&=0, V is the volume
closed byS and the positive direction afs is along the out
normal of the interface. By differentiating all terms in Eg)
with respect td, and by using the Gaussian theorgl8], the
following key equation of the model is obtained:

E(X,1)? 1 &xt)? E(X,1)?
( 25(%) )+ (%) 5(%) :DEVZ( 25(%)

This expression suggests two possible dissipation wdys:
the dissipation depicted by the tefré(x,t)%]/[ 8(X) mp(X) ],
called self-dissipation; an@) the energy of a unit first trans-
ferred by the termDgV?(£(X,t)2/28(X)) to others and then
dissipated by the terihé(x,t)?]/[ 8(X) p(X)], called coop-
erative dissipation. This equation describes the coupling

a
ot

). 3

the slow and the fast relaxation units. If the coupling is weak

enough, i.e.Dg(X)—0, then the coupled relaxation will re-
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duce to individual relaxations, a case that will not be dis-

cussed in this paper.

For the fieldF(t) indicated above, the normalized relax-

ation function of the whole systeg(t) obtained by integrat-
ing £(X,t) over space, is given by

f E(X,1)d3x
o(t)= (4)

f f()?,O)d3x.

As mentioned above, there is an energy fIE@(, from the

FIG. 1. Calculated relaxation functiom(f), plotted as a con-
tour plot (&) and a surface ploth), respectively, as functions of

normalized timet=t/ry and| for c=0.6.

space and symmetric about any fast unit. For the sake of
simplicity, we only focus on this case and the calculations
will be carried out in one dimension assuming that the small-
est period between the fast unitdisWith this approach, we
only need to calculaté(X,t) within the range &x<L/2 for

a fast unit with sizelL g, which is placed at the origin. The
numerical method for solving Eq(5) is the classical-

slow to the fast units because the relaxation rate of the slowifferential method 17] (see Appendix for details

units is slower than that of the fast ones. If the energy trans- The partial-differential Eq(5) can be normalized to a
ported out from a slow unit is much larger than that dissi-dimensionless equation,  J&(X,t)%/ at+20£(X,t)?
pated by the unit itself, then the self dissipation of the slow=g2[ £(x 1)2], by expressing it in terms of the dimension-

unit may be neglected. In this paper, we will focus on this
case, i.e., strong coupling between the fast and the slow uni{

so thatDg(X) has a relatively large value. In this situation
the following simplifications will be made in E¢3) to make

it amenable for numerical calculationsp(X) is taken to
have the same valug, for all the fast units. The parameter
S8(X) is equal to a constant valugfor both the fast and the
slow units. The coupling coefficienDg(X), is taken to be
independent oK. Then, Eq.(3) can be rewritten as

7 +)\2 va A YA
IE(X,t) Y £(X,t)

. =DV £(x.1)?],

1
“lo

for fast units,

©)

for slow units.

IIl. RESULTS AND DISCUSSIONS

In principle, Eq.(5) could be solved by numerical meth-

ess quantitiesf=t/rp, X=%X/\Dg7p, where V?=9?/9%?

? 921952+ 9% 922. Thus, the solutions of Eq5) depend on

" two dimensionless parametes=Lg/L, andl=L/\/Dg7p,
wherec represents the ratio of the relaxation strengths of the
fast and the slow relaxations, ahdstands for the spatial
coupling strength between the units. Here, we shall focus our
attention on the dependence of the relaxation funcidm),
onl.

In Fig. 1, ¢(t) for c=0.6 is plotted as a function of
log.o(t/ 7p) and logq(l) in two different ways. In this man-
ner, contour and surface plots of the same data(@j are
obtained. An important characteristic gft) is that it exhib-
its a crossover from a faster decay to a slower one occurring
att., i.e., a bimodal relaxation for largé>10" %5 corre-
sponding to smalD¢ . The crossover timg, is almost inde-
pendent ofl. However, when is small enough €10 %9,
the bimodal relaxation transforms to a single-mode relax-
ation. These results mean that there is a splitting from a

ods for the whole system. If the fast units are distributedhigh-temperature single relaxation into a low-temperature bi-

uniformly in space, then the solution éfX,t) is periodic in

modal process at a certain temperatligesincel ~D ¢ Y2 and
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. . . energy transported to them from the slow units. Conversely,
10" 10° 10 10° the modified relaxation of the fast units will affect the energy
Normalized Time t/t, transport of the slow units and their relaxation dynamics. As
_ _ _ a consequence, the stretched relaxation zi@te’ns a coupled
FIG. 2. Calculated relaxation functiong(t), in (8 and  relaxation between the fast and the slow units. The crossover

—In[¢(t)] in (b) vs the normalized timet/ry, for four discrete

from the fast Debye-like mode of relaxation to the slow re-
values ofl with c=0.6.

laxation mode corresponds to a transformation from the in-
dependent relaxation of the fast units to a coupled relaxation
involving both the fast and the slow units. For relatively

weak coupling between the fast and the slow units, i.e., small

Dg, there exists a crossover tinig after which the relax-
ation is slowed down in such a way that it is described by a
stretched exponential decay that has a much larger relaxation
time. Stretched exponential decay mean that the effective
relaxation time = t'"#[1], increases with time. Accord-

ing to our paper, only the fast units intervene in the relax-
ation occurring at short time. With time, the slow units near
the fast units first, and then more and more slow units lo-
cated far away from the fast units will relax through the
the stretched factog. cooperative dissipation. This means that the spatial corre-

Although a crossover can be seen in both Figs) and lated region of relaxation increases and energy transport

2(b), the latter figure shows better the crossover from &'om the region to the fast units will need long time. As a
linear-exponential decay to an approximately stretchedl€Sult, Tef becomgs larger with time so that. the relaxation
exponential decay for large values lofin a similar way as shows an approximately stretched-exponential feature.

that observed in Fig.(&). Moreover, the value g8 increases The results obtained from numerica_l calculations bear
with either the decrease dfor increase oD, i.e., with  Sirong resemblance to those of the coupling mo8gl]. The
temperature. key feature of theAcoupImg model is the rather sharp cross-
In this paper, we have assumed that the self dissipation giver, at some time., from independent relaxation with an
the slow units is so small, compared with the energy transapproximately  linear-exponential ~ time  dependence,
ported out from them, that it could be neglected. In this€Xxp(—t/7g), to a coupled or cooperative relaxation with a
situation, the only dissipation of the whole system originatesstretched-exponential relaxation function, pxg/z)""].
from the fast units. These units will relax first, and then theThere is support of this crossover from experimental data
slow units will transport their energy to the fast units where[18—22. This feature is reproduced by the results of the
it will be dissipated. Therefore, at short time, the fast unitsmodel and other models based on nonlinear Hamiltonian dy-
will relax independently. A Debye relaxation will occur be- namics[4]. In the present paper, the paramel®¢ deter-
cause the energy difference between the fast and the slowines the coupling strength, and hence, the magnitude of the
units is very small and, consequently, the energy exchangeoupling parametem(3=1—n) of the coupling mode]JFig.
between them is negligible. However, at long time, both the2(b)]. The crossover at. gives rise to the relations
energy difference and the energy exchange become larger, sel t; "7]?(*~™, which has proven to be prolific in applica-
that the relaxation of the fast units will be modified by the tions [23]. Thus, we think that the consequences of the

Dg increases with temperature, as shown in Fi@g) &nd
1(b).

In Fig. 2, the decay functionp(t) is plotted against
log,o(t/ mp) for four different values of. We have plotted the
same data in two waysg(t) vs logo(t/7p) [Fig. 2(a)] and
logio( —In @) vs logo(t/ 7p) [Fig. 2(b)]. If ¢(t) is assumed to
be a stretched-exponential function,

woe-{3]

then the slope of log(—In ¢) vs log«(t/ 7p) is just equal to

(6)
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TABLE |. Fitting parameters of the present model for the fits of nuclear-magnetic-resonang¢@8], and molecular-dynamics
experimental data of polybutadiefieB) from Ref.[19] at different  simulations[29] show that the Kohlrausch-Williams-Waff

temperatures. exponentg for OTP (o-terphenyl and other small molecule
glass formers increases with temperature. One key point of
Temperature the present paper is that there are two kinds of coupled re-
(K) 7 (se9 L?/De (se9 ¢ PBAC laxation units, one fast and the other slow. We would like to
280 451013 1.64<10°1° 0334 0025 Pointout, with two relaxation times assumed, a recent work
260 41108 2.78<10°1° 0263  0.025 basgd upon the kinetic Ismg m0(_:lel on an alternating isotopic
240 38¢10°%  667¢10°° 0185 0025 qhgm[SO] gives the Nagels’ scaling laj25] for the suscep-
220 35102 201x10° 0421 o017 Uiy,
200 3.3x10®  6.68<10°° 0071 0.001
180 3.0<10°3  1.05<10°%  0.042  0.009 ACKNOWLEDGMENTS
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are given.pexp(t) = @(t) + ¢gac, Wherep(t) is calculated Research

from Egs. (4) and (5) with the three fitting parameters,
m5,L%/Dg, andc. The valuespgac given in the last column
of Table | represent a very small background that let the fits

look better. In the fitting, we find that and Dg are not For one dimension, the zone between 0 ar@lis divided
independent-fitting parameters. Moreovef/De andc de-  into n small segments with lengthx=L/2n (usually n is
termine the long-time stretched-exponential relaxation whilgaken to be 1000 and we label the segments as 1,2,..n

7p andc control the short-time fast process. The four fitting from the left end to the right end. Based on the classical-
parameters for the data of RgL9] at seven temperatures are gitferential method17], we obtain the following differential

shown in the Table |. The fits of the present paper to thequations for the numerical calculation of the partial-
experiments, shown in Fig. 3, look quite good. differential Eq.(5):

The present paper predicts a transformation from the bi-
modal to the single-mode relaxation when the coupling be- t
tween the fast and the slow units is strong enough, i.e., foﬁ(i,HAt)Z:f(i,t)z( 1-20_—
large values of the coupling constabt-. As mentioned D
above, when temperature goes @p; increase. Therefore, —11)2-2&(i,1)%], i=1,..n,
the calculated single-mode relaxation corresponds to higher
temperature, and it split into a bimodal relaxation as temwhereAt is the calculation time step. The convergence con-
perature decreases. In other words, the heterogeneity witlitions of the above equation amet<0.5Ax%/Dg and At
diminish with increasing temperature. This temperature de<0.1r,. Moreover, the boundary condition is the symmetric
pendence seems to be supported by experiments. For egendition, i.e., §(0t)=§&(2t) and &(n+1t)=§&(n—1t).
ample, light scatterind24], dielectric relaxation25—-27,  The initial condition is&(i,0)=1,i=1,...n.
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