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Modeling dynamically heterogeneous coupled relaxations
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A model describing dynamically heterogeneous relaxation in complex coupled systems is presented. The
model predicts the splitting of a high-temperature single Debye relaxation to a low-temperature bimodal
relaxation. The bimodal process shows a crossover from a Debye-type relaxation to an approximately
stretched-exponential relaxation. Some general features of relaxation in complex systems emerge from the
predictions of the model, and a comparison of the model with experiments is reported.
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I. INTRODUCTION

The relaxation dynamics of molecules and other mutua
interacting densely packed embodies many challenging p
lems of current interest in many fields, including the gla
transition, polymer viscoelasticity, and solid-state ion
@1,2#. These issues are difficult to treat because of the p
ence of several complicating factors. The foremost one is
many-body effect, sometimes loosely referred to as coo
ativity, coupled dynamics, intermolecular constraints,
cage effect, that is very difficult to accurately describe. Th
are some models@3–5# that identify the cage effects or co
operative dynamics from the many-body molecular inter
tion as responsible for the nonexponential relaxation func
@6,7# and the dynamically heterogeneous nature of the re
ation, i.e., the existence of fast and slow relaxing units@8#.
Recent experiments employing nuclear-magnetic-resona
dielectric, and optical techniques suggest the presence o
namically distinguishable subensembles@9–12#. This impor-
tant finding has recently been reviewed@13#.

In principle, if the Hamiltonian that includes all interac
tions of the system is used, the nonexponentiality, dyna
heterogeneity, and other properties of the relaxation of
coupled units would emerge. Although such an approac
not possible at this time, molecular-dynamics simulations
indicate dynamical heterogeneity in a glass-forming sys
@14#. In this paper, we consider a model system of coup
fast and slow relaxing units. The purpose is to calculate
results of this paper, which has built in some features
dynamical heterogeneity. The model is also applicable
other problems that consider the slow down of the relaxa
of a test molecular unit coupled to a nonrelaxing molecu
environment.

II. MODEL

Under the influence of a small enough time-depend
external fieldF(t), the linear response of all the units locat
at space pointxY and at timet is described by a dynami
variable, j(xY ,t), such as polarization. The energy dens
associated with this response isj(xY ,t)2/2d(xY ) @15#, where
d(xY ) is the difference between the static and high-freque
limit susceptibilities, such as the dielectric susceptibility a
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the compliance in dielectric and mechanical measureme
respectively. According to the Debye theory, the change
j(xY ,t) with time ~i.e., relaxation! of the units is proportional
to j(xY ,t)/tD(xY ), and the energy dissipated per unit time
j(xY ,t)2/d(xY )tD(xY ) @15#, wheretD(xY ) is the relaxation time.

Because of thermal agitation, the units move randomly
their interaction field and scattering processes will occur t
give rise to the energy exchange between them. Thus, t
is a spatial energy flux,iYE(xY ,t), between different units. Al-
though there is an energy exchange between two units
any single-scattering process at the equilibrium state, i
expected that the net energy exchange is zero,@ iYE(xY ,t)
50#, for relatively long times compared with the time inte
val between two successive scattering processes. If the
ergy difference between the units isD(j(xY ,t)2/2d(xY )), there
will be a net energy exchange between the units so
iYE(xY ,t) will be proportional to both the number of scatterin
processes per unit time,vS(xY ), andD(j(xY ,t)2/2d(xY )), i.e.,
iYE(xY ,t)}vS(xY )D(j(xY ,t)2/2d(xY ,t)). The approximate re-
placement of the energy difference by the spatial differen
form, ¹(j(xY ,t)2/2d(xY )), leads to,

iYE~xY ,t !52DE~xY !¹S j~xY ,t !2

2d~xY ! D , ~1!

whereDE(xY ) is the coupling constant whose sign is alwa
positive. The negative sign in Eq.~1! indicates that the di-
rection of the energy flux points from the units with high
energy to those with lower energy. As the temperature
creases, the random motions of the units become stronge
that vS and consequentlyDE(xY ) will increase.

It is worth noting that Eq.~1! has the same form as th
well-known diffusion law@16#. However, while thermal en-
ergy is transported during a thermal diffusion process, Eq
tion ~1! describes the energy exchange between different
teraction units. To know whetherDE(xY ) has a definite
relation with the thermal diffusion coefficient requires fu
ther study.

Without losing generality, let the external field

F~ t !5 HF0, t,0
0, t>0 .

For a closed interfaceS around a unit, the conservation o
energy requires that,
©2001 The American Physical Society02-1
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E~0!5E
V

j~xY ,t !2

2d~xY !
dV1E

0

tS R
S
iYE~xY ,t8! dsY D dt8

1E
V
F E

0

t j~xY ,t !2

d~xY !tD~xY !
dt8G dV, ~2!

whereE(0) is the energy of the unit att50, V is the volume
closed byS, and the positive direction ofds̄ is along the out
normal of the interface. By differentiating all terms in Eq.~2!
with respect tot, and by using the Gaussian theorem@16#, the
following key equation of the model is obtained:

]

]t S j~xY ,t !2

2d~xY ! D1
1

tD~xY !

j~xY ,t !2

d~xY !
5DE¹2S j~xY ,t !2

2d~xY ! D . ~3!

This expression suggests two possible dissipation ways~1!
the dissipation depicted by the term@j(xY ,t)2#/@d(xY )tD(xY )#,
called self-dissipation; and~2! the energy of a unit first trans
ferred by the termDE¹2(j(xY ,t)2/2d(xY )) to others and then
dissipated by the term@j(xY ,t)2#/@d(xY )tD(xY )#, called coop-
erative dissipation. This equation describes the coupling
the slow and the fast relaxation units. If the coupling is we
enough, i.e.,DE(xY )→0, then the coupled relaxation will re
duce to individual relaxations, a case that will not be d
cussed in this paper.

For the fieldF(t) indicated above, the normalized rela
ation function of the whole systemw(t) obtained by integrat-
ing j(xY ,t) over space, is given by

w~ t !5

E j~xY ,t !d3x

E j~xY ,0!d3x

. ~4!

As mentioned above, there is an energy flux,iYE , from the
slow to the fast units because the relaxation rate of the s
units is slower than that of the fast ones. If the energy tra
ported out from a slow unit is much larger than that dis
pated by the unit itself, then the self dissipation of the sl
unit may be neglected. In this paper, we will focus on t
case, i.e., strong coupling between the fast and the slow u
so thatDE(xY ) has a relatively large value. In this situatio
the following simplifications will be made in Eq.~3! to make
it amenable for numerical calculations.tD(xY ) is taken to
have the same valuetD for all the fast units. The paramete
d(xY ) is equal to a constant valued for both the fast and the
slow units. The coupling coefficient.DE(xY ), is taken to be
independent ofxY . Then, Eq.~3! can be rewritten as

]j~xY ,t !2

]t
12u

j~xY ,t !2

tD
5DE¹2@j~xY ,t !2#,

u5H 1 for fast units,

0 for slow units.
~5!

III. RESULTS AND DISCUSSIONS

In principle, Eq.~5! could be solved by numerical meth
ods for the whole system. If the fast units are distribu
uniformly in space, then the solution ofj(xY ,t) is periodic in
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space and symmetric about any fast unit. For the sake
simplicity, we only focus on this case and the calculatio
will be carried out in one dimension assuming that the sm
est period between the fast units isL. With this approach, we
only need to calculatej(xY ,t) within the range 0<x<L/2 for
a fast unit with size,LF , which is placed at the origin. The
numerical method for solving Eq.~5! is the classical-
differential method@17# ~see Appendix for details!.

The partial-differential Eq.~5! can be normalized to a
dimensionless equation, ]j( x̂, t̂ )2/] t̂12uj( x̂, t̂ )2

5¹̂2@j( x̂, t̂ )2#, by expressing it in terms of the dimension
less quantities,t̂[t/tD , x̂[xY /ADEtD, where ¹̂25]2/] x̂2

1]2/] ŷ21]2/] ẑ2. Thus, the solutions of Eq.~5! depend on
two dimensionless parameters:c[LF /L, and l[L/ADEtD,
wherec represents the ratio of the relaxation strengths of
fast and the slow relaxations, andl stands for the spatia
coupling strength between the units. Here, we shall focus
attention on the dependence of the relaxation function,w(t),
on l.

In Fig. 1, w(t) for c50.6 is plotted as a function o
log10(t/tD) and log10( l ) in two different ways. In this man-
ner, contour and surface plots of the same data ofw(t) are
obtained. An important characteristic ofw(t) is that it exhib-
its a crossover from a faster decay to a slower one occur
at tc , i.e., a bimodal relaxation for largel (.1020.5) corre-
sponding to smallDE . The crossover timetc is almost inde-
pendent ofl. However, whenl is small enough (,1020.5),
the bimodal relaxation transforms to a single-mode rel
ation. These results mean that there is a splitting from
high-temperature single relaxation into a low-temperature
modal process at a certain temperatureTS sincel;DE

21/2 and

FIG. 1. Calculated relaxation function,f( t̂ ), plotted as a con-
tour plot ~a! and a surface plot~b!, respectively, as functions o

normalized timet̂[t/tD and l for c50.6.
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DE increases with temperature, as shown in Fig. 1~a! and
1~b!.

In Fig. 2, the decay functionw(t) is plotted against
log10(t/tD) for four different values ofl. We have plotted the
same data in two ways,w(t) vs log10(t/tD) @Fig. 2~a!# and
log10(2 ln w) vs log10(t/tD) @Fig. 2~b!#. If w(t) is assumed to
be a stretched-exponential function,

w~ t !5expF2S t

t D bG , ~6!

then the slope of log10(2 ln w) vs log10(t/tD) is just equal to
the stretched factorb.

Although a crossover can be seen in both Figs. 2~a! and
2~b!, the latter figure shows better the crossover from
linear-exponential decay to an approximately stretch
exponential decay for large values ofl, in a similar way as
that observed in Fig. 1~a!. Moreover, the value ofb increases
with either the decrease ofl or increase ofDE , i.e., with
temperature.

In this paper, we have assumed that the self dissipatio
the slow units is so small, compared with the energy tra
ported out from them, that it could be neglected. In t
situation, the only dissipation of the whole system origina
from the fast units. These units will relax first, and then t
slow units will transport their energy to the fast units whe
it will be dissipated. Therefore, at short time, the fast un
will relax independently. A Debye relaxation will occur be
cause the energy difference between the fast and the
units is very small and, consequently, the energy excha
between them is negligible. However, at long time, both
energy difference and the energy exchange become large
that the relaxation of the fast units will be modified by t

FIG. 2. Calculated relaxation function,f(t), in ~a! and
2 ln@f(t)# in ~b! vs the normalized time,t/tD , for four discrete
values ofl with c50.6.
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energy transported to them from the slow units. Convers
the modified relaxation of the fast units will affect the ener
transport of the slow units and their relaxation dynamics.
a consequence, the stretched relaxation aftert̂ c is a coupled
relaxation between the fast and the slow units. The crosso
from the fast Debye-like mode of relaxation to the slow r
laxation mode corresponds to a transformation from the
dependent relaxation of the fast units to a coupled relaxa
involving both the fast and the slow units. For relative
weak coupling between the fast and the slow units, i.e., sm
DE , there exists a crossover timet̂ c after which the relax-
ation is slowed down in such a way that it is described b
stretched exponential decay that has a much larger relaxa
time. Stretched exponential decay mean that the effec
relaxation time,teff5tbt12b @1#, increases with time. Accord
ing to our paper, only the fast units intervene in the rela
ation occurring at short time. With time, the slow units ne
the fast units first, and then more and more slow units
cated far away from the fast units will relax through th
cooperative dissipation. This means that the spatial co
lated region of relaxation increases and energy trans
from the region to the fast units will need long time. As
result, teff becomes larger with time so that the relaxati
shows an approximately stretched-exponential feature.

The results obtained from numerical calculations b
strong resemblance to those of the coupling model@3,4#. The
key feature of the coupling model is the rather sharp cro
over, at some timet̂ c , from independent relaxation with a
approximately linear-exponential time dependen
exp(2t/t0), to a coupled or cooperative relaxation with
stretched-exponential relaxation function, exp@2(t/t0)

12n#.
There is support of this crossover from experimental d
@18–22#. This feature is reproduced by the results of t
model and other models based on nonlinear Hamiltonian
namics @4#. In the present paper, the parameterDE deter-
mines the coupling strength, and hence, the magnitude o
coupling parametern(b[12n) of the coupling model@Fig.
2~b!#. The crossover attc gives rise to the relation,t
5@ tc

2nt0#2/(12n), which has proven to be prolific in applica
tions @23#. Thus, we think that the consequences of t

FIG. 3. Comparisons of the present model with the experime
data of polybutadiene~PB! from Ref.@19# at different temperatures
2-3
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present model are consistent with the physical picture p
posed by the coupling model.

In Fig. 3, comparisons of the present paper with the
perimental data reported for polybutadiene~PB! in Ref. @19#
are given.wEXP(t)5w(t)1wBAC , wherew(t) is calculated
from Eqs. ~4! and ~5! with the three fitting parameters
tD ,L2/DE , andc. The valueswBAC given in the last column
of Table I represent a very small background that let the
look better. In the fitting, we find thatL and DE are not
independent-fitting parameters. Moreover,L2/DE and c de-
termine the long-time stretched-exponential relaxation wh
tD andc control the short-time fast process. The four fittin
parameters for the data of Ref.@19# at seven temperatures a
shown in the Table I. The fits of the present paper to
experiments, shown in Fig. 3, look quite good.

The present paper predicts a transformation from the
modal to the single-mode relaxation when the coupling
tween the fast and the slow units is strong enough, i.e.,
large values of the coupling constantDE . As mentioned
above, when temperature goes up,DE increase. Therefore
the calculated single-mode relaxation corresponds to hig
temperature, and it split into a bimodal relaxation as te
perature decreases. In other words, the heterogeneity
diminish with increasing temperature. This temperature
pendence seems to be supported by experiments. Fo
ample, light scattering@24#, dielectric relaxation@25–27#,

TABLE I. Fitting parameters of the present model for the fits
experimental data of polybutadiene~PB! from Ref.@19# at different
temperatures.

Temperature
~K! tD ~sec! L2/DE ~sec! c wBAC

280 4.5310213 1.64310210 0.334 0.025
260 4.1310213 2.78310210 0.263 0.025
240 3.8310213 6.67310210 0.185 0.025
220 3.5310213 2.0131029 0.121 0.017
200 3.3310213 6.6831029 0.071 0.001
180 3.0310213 1.0531028 0.042 0.009
160 3.1310213 1.2531027 0.024 0.008
d
.
76

-
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nuclear-magnetic-resonance@28#, and molecular-dynamics
simulations @29# show that the Kohlrausch-Williams-Waf
exponent,b for OTP ~o-terphenyl! and other small molecule
glass formers increases with temperature. One key poin
the present paper is that there are two kinds of coupled
laxation units, one fast and the other slow. We would like
point out, with two relaxation times assumed, a recent w
based upon the kinetic Ising model on an alternating isoto
chain@30# gives the Nagels’ scaling law@25# for the suscep-
tibility.
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APPENDIX

For one dimension, the zone between 0 andL/2 is divided
into n small segments with lengthDx5L/2n ~usually n is
taken to be 1000!, and we label the segments as 1,2,...i ,...n
from the left end to the right end. Based on the classic
differential method@17#, we obtain the following differential
equations for the numerical calculation of the parti
differential Eq.~5!:

j~ i ,t1Dt !25j~ i ,t !2S 122u
Dt

tD
D1

Dt

Dx2 DE@j~ i 11,t !21j~ i

21,t !222j~ i ,t !2#, i 51,...,n,

whereDt is the calculation time step. The convergence co
ditions of the above equation areDt<0.5Dx2/DE and Dt
<0.1tD . Moreover, the boundary condition is the symmet
condition, i.e., j(0,t)5j(2,t) and j(n11,t)5j(n21,t).
The initial condition isj( i ,0)51, i 51,...,n.
s
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